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Abstract
A 3 × 3 discrete eigenvalue problem associated with the Lotka–Volterra
hierarchy is studied and the corresponding nonlinearized one, an integrable
Poisson map with a Lie–Poisson structure, is also presented. Moreover, a
2 × 2 nonlinearized eigenvalue problem, which also begets the Lotka–Volterra
hierarchy, is proved to be a reduction of the Poisson map on the leaves of the
symplectic foliation.

PACS numbers: 02.30.Ik, 02.30.−f, 02.40.−k

1. Introduction

A symplectic map which preserves the symplectic forms is referred to as a discrete-time
Hamiltonian system. Based on a discrete version of the Arnold–Liouville theorem, Veselov
introduced the definition of an integrable symplectic map [1]: a symplectic map on a
2n-dimensional symplectic manifold is said to be integrable if it admits n independent integrals
in involution. Veselov’s paper, together with [2,3], constructed the theory of the discrete version
of classical integrable systems. Since then the investigation of this field has made important
progress. Some methods have been developed to obtain new integrable symplectic maps [4–6],
among which the nonlinearization technique [7–11] or the restricted flow technique [12] have
proved to be effective.

The integrable maps in the above literature were based on the symplectic manifolds whose
Poisson structure is nondegenerate. In [13–17], it has been shown that the Lie–Poisson structure
associated with a Lie algebra is a generalized Hamiltonian structure on a Poisson manifold.
The aim of the present paper is to construct the discrete version of the generalized finite-
dimensional integrable Hamiltonian system, that is, integrable Poisson maps [18], on the

3 Author to whom any correspondence should be addressed.
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Poisson manifold. A Poisson map ϕ : M3N −→ M3N is said to be completely integrable
on the Poisson manifold M3N if it has N independent Casimir functions and N independent
conserved integrals in involution. In this paper, a discrete 3×3 eigenvalue problem is introduced
with the help of a Lie group homomorphism. It is shown that the 3 × 3 eigenvalue problem
has the same isospectral evolution equations [19] as the 2 × 2 one. A constraint between
the potentials and eigenfunctions is proposed, from which the 3 × 3 eigenvalue problem is
nonlinearized to be a completely integrable Poisson map with a Lie–Poisson structure on the
Poisson manifold R3N . As a reduction of the integrable Poisson map on the co-adjoint orbit,
an integrable symplectic map on the symplectic manifoldR2N is obtained, which is exactly the
nonlinearized 2 × 2 eigenvalue problem. There is a systematic method to find constraints by
symmetry constraints [20, 21]. Here we construct the required constraint with the help of the
stationary discrete zero-curvature equations, which yield the Lax representation and conserved
integrals in a natural way.

The organization of this paper is as follows. In section 2, the Lie group homomorphism
from SL(2, R) to some subgroup of SL(3, R) is introduced and the corresponding Lie algebra
isomorphism as the tangent map is also presented. These maps provide the basic matrix
elements to study the spectral problems. In section 3, a discrete 3×3 matrix spectral problem,
which has the same isospectral evolution equation with the 2 × 2 matrix spectral problem, is
proposed. Moreover, the relation between the two spectral problems is discussed. In section 4,
we give the commutative representation of the Lotka–Volterra vectors by the 3 × 3 spectral
problem. In section 5, under a constraint between the potentials and eigenfunctions, we obtain
a Poisson map, which is the nonlinearization of the 3 × 3 matrix spectral problem. Moreover,
the Lie–Poisson structure and the integrability of this Poisson map are studied. The paper
closes with section 6 where the integrable symplectic map is presented, which is exactly a
reduction of the Poisson map on the co-adjoint orbit.

It is also worth noting that important work on the construction of the 2×2 and 3×3 matrix
eigenvalue problems for the same hierarchy of AKNS systems is given in [22], which deals
with the finte-dimensional integrable system with the help of binary nonlinearization theory.

2. Preliminaries

Similar to the framework [18], we define a map

α �−→ Lζ (α) =
(
α1 ζα2

ζα3 −α1

)
(2.1)

which is a Lie algebra isomorphism between R3 with Lie bracket [α, β] = Cλ(α× β) and the
sl(2, R), where

Cλ =
(
λ 0 0
0 0 2
0 2 0

)
. (2.2)

Define π : SL(2, R) → SL(3, R) by

Lλ(πλ(g)α) = AdgLλ(α) = gLλ(α)g−1; (2.3a)

that is,

π : g =
(
a b

c d

)
�−→ π(g) =


 ad + bc −ζac ζbd

−2ab/ζ a2 −b2

2cd/ζ −c2 d2


 , (2.3b)

and we have

π(SL(2, R), ζ ) = {π(g) : (π(g))T C−1
λ π(g) = C−1

λ , g ∈ SL(2, R)}. (2.4)
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Consider the tangent map of π , Teπ : sl(2, R) −→ sl(3, R):

Teπ : A = Lζ (α) �−→ Teπ(A) =
( 0 −λα3 λα2

−2α2 2α1 0
2α3 0 −2α1

)
, (2.5)

which yields the Lie algebra of the Lie group π(SL(2, R), ζ ):

Teπ(sl(2, R), ζ ) = {Teπ(A) : (Teπ(A))
T C−1

λ + C−1
λ Teπ(A) = 0, A ∈ sl(2, R)}. (2.6)

By direct calculations we find that the map

σλ : α �−→ σλ(α) = Teπ(Lζ (α)) (2.7)

satisfies

[σλ(α), σλ(β)] = σλ(σλ(α)β) = σλ(Cλ(α × β)) (2.8)

and

σλ(π(g)α) = Adπ(g)σλ(α). (2.9)

3. Two discrete eigenvalue problems

LetE be the shift operator: Ef (n) = f (n+ 1), E−1f (n) = f (n−1). Consider the following
two discrete eigenvalue problems [23]:

Eψ = gψ, (3.1)

Ey = π(g)y (3.2)

with

g =
(

0 1/
√
cn

−√
cn ζ/

√
cn

)
, π(g) =


−1 0 λ/cn

0 0 −1/cn
−2 −cn λ/cn


 . (3.3)

Define two maps: Lg : R3 −→ gl(2, R) by

Lg(γ ) = Lζ (γ )g (3.4)

and σπ(g) : R3 −→ gl(3, R) by

σπ(g)(γ ) = σλ(γ )π(g). (3.5)

One can easily check that Lg, σπ(g) are linear one to one maps. Set V = Lζ (DG),
Ṽ = σλ(DG), with

D =
( 1

2 [(E−1c − λ)(1 + E−1)− c(1 + E)]
1 + E−1

−c(1 + E)

)
c,

then

(EV )g − gV = Lg[E(DG)− π(g)(DG)] = Lg
[
T

(
(K − λJ )G

0
0

)]
, (3.6)

(EṼ )π(g)− π(g)Ṽ = σπ(g)[E(DG)− π(g)(DG)] = σπ(g)

[
T

(
(K − λJ )G

0
0

)]
, (3.7)

where

T =

−1/2c 0 0

0 1 0

−1/c 0 1


 (3.8)
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and

K = c[(1 + E)c(1 + E)− (1 + E−1)c(1 + E−1)]c, J = c(E − E−1)c (3.9)

are the Lenard pair of operators.

Proposition 1. Equations (3.1) and (3.2) have the same isospectral evolution equation:

ct = (K − λJ )G. (3.10)
Proof. Let

ψt = Vψ, (3.11)

yt = Ṽ y, (3.12)

then the compatibility conditions of Lax pairs (3.1), (3.11) and (3.2), (3.12) lead to the discrete
zero-curvature equations:

gt − (EV )g + gV = Lg
{
T

[(
ct
0
0

)
−
(
(K − λJ )G

0
0

)]}
= 0, (3.13)

(π(g))t − (EṼ )π(g) + π(g)Ṽ = σπ(g)

{
T

[(
ct
0
0

)
−
(
(K − λJ )G

0
0

)]}
= 0, (3.14)

where gt = Lg
[
T

(
ct
0
0

)]
, (π(g))t = σπ(g)

[
T

(
ct
0
0

)]
. Equations (3.13) and (3.14)

imply (3.10). �
Proposition 2. Let ) be a fundamental matrix solution of equation (3.1) with |)| = 1, then
π()) is a fundamental matrix solution of equation (3.2).
Proof. ∀α ∈ R3, using equation (2.3), we have

Lζ (π())α) = )Lζ (α))−1 (3.15)

and

ELζ (π())α) = Lζ (Eπ())α) = E)Lζ (α)E)−1 = g)Lζ (α))−1g−1 = Lζ (π(g)π())α).
(3.16)

Hence

Eπ()) = π(g)π()), (3.17)

which completes the proof of proposition 2. �
Remark 1. Let ) = (φij )2×2, then π()) can be explicitly written as

φ11φ22 + φ12φ21 −ζφ11φ21 ζφ12φ22

−2φ11φ12/ζ φ2
11 −φ2

12
2φ21φ22/ζ −φ2

21 φ2
22


 .

Using the properties of the Lie groupπ(SL(2, R), ζ ) and the Lie algebra Teπ(sl(2, R), ζ ),
we have an important proposition, which plays a key role in the conserved integral.

Proposition 3. Let G satisfy E(DG) = π(g)(DG), (DG)t = σλ(α)(DG) and 〈·, ·〉 be the
standard inner product in R3, then

〈DG,C−1
λ DG〉 (3.18)

is invariant along the flows of E and t .
Proof. Since E(DG) = π(g)(DG), (DG)t = σλ(α)(DG), and hence

E〈DG,C−1
λ DG〉 = 〈DG, (π(g))T C−1

λ π(g)(DG)〉 = 〈DG,C−1
λ DG〉, (3.19)

〈DG,C−1
λ DG〉t = 〈DG, [(σλ(α))

T C−1
λ + C−1

λ σλ(α)]DG〉 = 0. (3.20)

The proof is complete. �
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4. The Lotka–Volterra vector fields and the commutative representation

Consider the Lenard recursive equations:

Jξ (−1) = 0, Kξ(j−1) = Jξ (j). (4.1)

Choosing a solution of the former as

g(−1)
n = 1

2cn
. (4.2)

Then the latter has special polynomial solutions:

g(0)n = 1, g(1)n = cn+1 + cn + cn−1, . . . . (4.3)

The general solution of (4.1) is expressed as the linear combination

ξ (j) = α0g
(j)
n + α1g

(j−1)
n + · · · + αj+1g

(−1)
n , (4.4)

where α1, α2, . . . , αj+1 are arbitrary constants.
The so-called Lotka–Volterra vector fields are defined as X(j)n = Jg

(j)
n , and the first few

members are

X(−1)
n = 0, X(0)n = cn(cn+1 − cn−1), (4.51)

X(1)n = cn(cn+2cn+1 + c2
n+1 + cn+1cn − cncn−1 − c2

n−1 − cn−1cn−2). (4.52)

Much work on the Lotka–Volterra equation

cn,t = cn(cn+1 − cn−1)

has been carried out (see, e.g., [23–27]).
In the following, we will give the commutative representation with the 3 × 3 form.

Let

G(N)(λ, ξ) =
N∑
j=0

ξ (j−1)λN−j . (4.6)

We have

(K − λJ )G(N) = Kξ(N−1) +
N−1∑
j=0

(Kξ(j−1) − Jξ (j))λN−j − (J ξ (−1))λN+1

= Jξ (N) = α0X
(N) + α1X

(N−1) + · · · + αNX
(0).

Theorem 1. Let G(N) be defined in (4.6) and Ṽ (N) = σλ(DG
(N)). Then

(i) (K − λJ )G(N) = Jξ (N). (4.7)

(ii) (EṼ (N))π(g)− π(g)Ṽ (N) = σπ(g)

[
T

(
Jξ(N)

0
0

)]
. (4.8)

Corollary 1. The discrete soliton equation:

cnt = Jξ (N) (4.9)

is equivalent to the discrete zero-curvature equation:

(π(g))t = (EṼ (N))π(g)− π(g)Ṽ (N). (4.10)
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5. The Poisson map and the Lie–Poisson structure

Let

Ey(j) = π(g)(λj )y
(j), y(j) = (y(j1), y(j2), y(j3))T , j = 1, . . . , N, (5.1)

where λ1, . . . , λN areN mutual distinct real numbers. A direct calculation gives the following
lemma.

Lemma 1. Suppose y(j) satisfy equation (5.1). Then

E(Dj/
(j))− π(g)(λj )(Dj/

(j)) = T

(
(K − λjJ )/

(j)

0
0

)
= 0, (5.2)

where /(j) = 2
λj c
y(j1), Dj = D(λj ).

Using equations (3.7) and (5.2), we can easily obtain the following results, which play an
important part in the Lax representation and the conserved integrals.

Proposition 4. Let y(j) satisfy equation (5.1). Then
N∑
j=1

1

λ− λj
[Eσ(D/(j))π(g)− π(g)σ (D/(j))] = −σπ(g)

[
T

(
J
∑N

j=1 /
(j)

0
0

)]
. (5.3)

Proposition 5. Let Gλ = g(−1) +
∑N

j=1[1/(λ− λj )]/(j), then

(Eσ(DGλ))π(g)− π(g)σ (DGλ) = σπ(g)

[
T

(
J (g(0) −∑N

j=1 /
(j))

0
0

)]
. (5.4)

Theorem 2. (Eσ(DGλ))π(g)− π(g)σ (DGλ) = 0 is equivalent to

cn = 2
N∑
j=1

y(j1)

λj
+

1

2
β, (5.5)

where β is a constant.

Substituting (5.5) into (5.1), we obtain the discrete nonlinearized eigenvalue problem

EY = ϕ(Y ), Y = (y(11), y(12), y(13), . . . , y(N1), y(N2), y(N3))T . (5.6)

From equation (3.7), we know that

E(DGλ) = π(g)(DGλ)

is equivalent to

Eσ(DGλ)π(g)− π(g)σ (DGλ) = 0.

Hence, if equation (5.5) holds, then theorem 2 and proposition 3 indicate that

Fλ = 1
4 〈DGλ,C

−1
λ DGλ〉 (5.7)

withDGλ = (− 1
2λ− 2

∑N
j=1 y

(j1)/λj , 1,− 1
2β − 2

∑N
j=1 y

(j1)/λj )
T − 2

∑N
j=1 y

(j)/(λ− λj )

is the conserved integral of the E flow. By direct calculation, we have

Fλ = λ

4

(
1

2
+ 2

N∑
j=1

y(j1)

(λ− λj )λj

)2

− 1

4

(
1

2
β + 2

N∑
j=1

y(j1)

λj
+ 2

N∑
j=1

y(j3)

λ− λj

)(
1 − 2

N∑
j=1

y(j2)

λ− λj

)

= λ

16
− β

8
+

N∑
j=1

I (j)

λ− λj
+

N∑
j=1

h(j)

(λ− λj )2
= λ

16
− β

8
+

∞∑
j=1

Fm

λm+1
, (5.8)
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where

h(j) = y(j2)y(j3) +
(y(j1))2

λj
, j = 1, . . . , N, (5.91)

I (j) = 1

2
y(j1) − 1

2
y(j3) +

β

4
y(j2) +

N∑
k=1

y(k1)

λk
y(j2) +

N∑
k=1

y(k1)

λk

y(j1)

λj

+
∑
k �=j

y(j2)y(k3) + y(j3)y(k2) + (λk−1 + λj−1)y(j1)y(k1)

λj − λk
, j = 1, . . . , N

(5.92)

and

Fm =
N∑
j=1

λmj I
(j) +m

N∑
j=1

λm−1
j h(j), m = 0, 1, . . . , N − 1. (5.10)

We have already found the map (5.6) and its conserved integral. Now we turn to
constructing the Poisson structure on R3N .

Consider the Lie algebras

LA(λj ) = {M : MTCλj + CλjM = 0,M ∈ sl(3, R)}. (5.11)

Choosing εj1 , ε
j

2 , ε
j

3 as a base of LA(λj ) by

ε
j

1 =
( 0 0 0

0 λj 0
0 0 −λj

)
, ε

j

2 =
( 0 0 2

−λj 0 0
0 0 0

)
, ε

j

3 =
( 0 −2 0

0 0 0
λj 0 0

)
(5.12)

we have the commutation relations

[εj1 , ε
j

2 ] = λjε
j

2 , [εj1 , ε
j

3 ] = −λjεj3 , [εj2 , ε
j

3 ] = 2εj1 . (5.13)

Let ωj1, ω
j

2, ω
j

3 be a dual basis for LA(λj )∗ � R3 and y(j) = y(j1)ω
j

1 + y(j2)ω
j

2 + y(j3)ω
j

3 ,
(j = 1, . . . , N). If F : LA(λj )∗ × · · · × LA(λj )∗ → R, then its gradient component is the
vector

∇jF = ∂F

∂y(j1)
ε
j

1 +
∂F

∂y(j2)
ε
j

2 +
∂F

∂y(j3)
ε
j

3 , j = 1, . . . , N. (5.14)

Thus, according to [13–17], the Lie–Poisson structure matrix associated with the Lie algebra
LA(λj ) is

Jj =
( 0 λjy

(j2) −λjy(j3)

−λjy(j2) 0 2y(j1)

λjy
(j3) −2y(j1) 0

)
, j = 1, . . . , N (5.15)

and the Lie–Poisson bracket on LA(λj )∗ × · · · × LA(λj )∗ � R3N is

{F,G} =
N∑
j=1

〈y(j); [∇jF,∇jG]〉 =
N∑
j=1

〈∇jF, Jj∇jG〉

=
N∑
j=1

[
λjy

(j2)

(
∂F

∂y(j1)

∂G

∂y(j2)
− ∂F

∂y(j2)

∂G

∂y(j1)

)

+ λjy
(j3)

(
∂F

∂y(j3)

∂G

∂y(j1)
− ∂F

∂y(j1)

∂G

∂y(j3)

)

+ 2y(j1)

(
∂F

∂y(j2)

∂G

∂y(j3)
− ∂F

∂y(j3)

∂G

∂y(j2)

)]
, (5.16)
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where〈·; ·〉 is the natural pairing between LA(λj ) and its dual LA(λj )∗, [·, ·] is the ordinary
Lie bracket on the Lie algebra LA(λj ) itself.

Following the preparation above, we now prove that the map (5.6) is a Poisson map on
the Poisson manifold {R3N, {·, ·}}.
Theorem 3. (i) Let z(k) = Ey(k), k = 1, . . . , N . Then

N∑
j=1

(A
j

k)
T Jj (y

(j))A
j

k = Jk(z
(k)), k = 1, . . . , N, (5.171)

N∑
j=1

(A
j

k)
T Jj (y

(j))Ajs = 0, k �= s (5.172)

where

A
j

k =

 ∂z

(k1)/∂y(j1) ∂z(k2)/∂y(j1) ∂z(k3)/∂y(j1)

∂z(k1)/∂y(j2) ∂z(k2)/∂y(j2) ∂z(k3)/∂y(j2)

∂z(k1)/∂y(j3) ∂z(k2)/∂y(j3) ∂z(k3)/∂y(j3)


 , k, j = 1, . . . , N.

(ii) Let ϕ∗ be a pull-back map induced by ϕ. Then

ϕ∗{F,G} = {ϕ∗F, ϕ∗G}, (5.18)

that is, Ey = ϕ(y) is a Poisson map.

Proof. From equation (5.5), we have

∂c

∂y(j1)
= 2

λj
,

∂c

∂y(j2)
= ∂c

∂y(j3)
= 0, j = 1, . . . , N. (5.19)

Using equation (5.19), through a tedious calculation, we obtain equation (5.17). According to
the Poisson bracket (5.16) and (5.17), one can easily prove that

{F(ϕ(y)),G(ϕ(y))} =
N∑
j=1

〈∇y(j)F, Jj (y
(j))∇y(j)G〉

=
N∑
k=1

N∑
s,j=1

〈∇z(k)F, (A
j

k)
T Jj (y

(j))Ajs∇z(k)G〉

=
N∑
k=1

〈∇z(k)F, Jk(z
(k))∇z(k)G〉 = {F(z),G(z)}(z), (5.20)

is the result we need.
Next we consider the problem of the integrability of the Poisson map (5.6). Regarding

the generating function Fλ as a Hamiltonian in the Poisson manifold {R3N, {·, ·}}, the flow
equation is

∂

∂tλ
y(j) = 1

2

[
1

λ− λj
σλ(D(λ)Gλ) +W(λ)

]
y(j), j = 1, . . . N, (5.21)

where

W(λ) =

 0 −(D(λ)Gλ)

(3) −(D(λ)Gλ)
(2)

0 (D(λ)Gλ)
(2) 0

0 0 −(D(λ)Gλ)
(2)


 , D(λ)Gλ =


 (D(λ)Gλ)

(1)

(D(λ)Gλ)
(2)

(D(λ)Gλ)
(3)


 .

�
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Proposition 6.

(i) h(j) = y(j2)y(j3) +
(y(j1))2

λj
, j = 1, . . . N (5.22)

are N Casimir functions of the Poisson structure (5.16).
(ii) The equation for D(µ)Gµ along the Fλ flow is

d

dtλ
(D(µ)Gµ) = 1

2

[
1

λ− µ
σλ(D(λ)Gλ) +W(λ)

]
D(µ)Gµ, (5.23)

where

1

λ− µ
σλ(D(λ)Gλ) +W(λ) = 1

λ− µ
σµ(D(λ)Gλ) + σµ

( 1
2 (D(λ)Gλ)

(2)

0
0

)
.

Proof.

(i) Since

Jj∇jh
(j) = 0, j = 1, . . . , N

thus ∀F ∈ C∞(R3N)

{F, h(j)} = 0, j = 1, . . . , N.

(ii) Equation (2.8) implies that

σλ(D(λ)Gλ)(D(λ)Gλ) = 0.

�
By equation (5.21) we have

d

dtλ
(D(µ)Gµ) =


−2

∑N
j=1 y

(j1)
tλ /λj

0

−2
∑N

j=1 y
(j1)
tλ /λj


− 2

N∑
j=1

1

µ− λj
y
(j)
tλ

= 1

2

[
1

λ− µ
σλ(D(λ)Gλ)(D(µ)Gµ −D(λ)Gλ) +W(λ)(D(µ)Gµ)

]

= 1

2

[
1

λ− µ
σλ(D(λ)Gλ) +W(λ)

]
D(µ)Gµ.

Using proposition 3 and equation (5.23), we have

Corollary 2. {Fλ,Fµ} = 0, ∀ λ,µ ∈ C;

{I (j), I (k)} = 0, 1 � k, j � N;
{Fm, Fn} = 0, ∀ m, n = 0, 1, . . . .

In the following, we will give the functional independence of the conserved integrals I (j),
1 � j � N .

Proposition 7. The N 1-forms dI (j), 1 � j � N , are linearly independent.

Proof. Suppose that there exist N constants α(j), 1 � j � N , satisfying

α(1)dI (1) + α(2)dI (2) + · · · + α(N)dI (N) = 0, (5.24)

then equation (5.23) implies

α(1)∇I (1) + α(2)∇I (2) + · · · + α(N)∇I (N) = 0. (5.25)

�
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Since

∇j I
(j) =




1
2 + 1

λj
y(j2) + 2y(j1)/λ2

j

β

4 +
∑N

k=1 y
(k1)/λk

− 1
2


 +

∑
k �=j

1

λj − λk
∇kh

(k), (5.26)

∇lI
(j) =


 y

(j2)/λl

0

0


 +

1

λj − λl


 (2/λl)y

(j1)

y(j3)

y(j2)


 , l �= j, (5.27)

we have

−1

2
α(1) + α(1)

∑
k �=1

y(k2)

λ1 − λk
+ α(2)

y(22)

λ2 − λ1
+ · · · + α(N)

y(N2)

λN − λ1
= 0, (5.28)

that is

−1

2
α(1) + (α(1) − α(2))

y(22)

λ1 − λ2
+ · · · + (α(1) − α(N))

y(N2)

λ1 − λN
= 0. (5.29)

Acting with the operators ∂/∂y(k2), 2 � k � N , on equation (5.29), we get that

α(1) − α(k) = 0, 2 � k � N. (5.30)

Substituting equation (5.30) into (5.29), we obtain that α(1) = 0, which, together with
equation (5.30), indicate that α(j) = 0, 1 � j � N . Hence the N 1-forms dI (j), 1 � j � N ,
are linearly independent.

The equivalent relation of the Hamiltonian functions on {R3N, {·, ·}} defined as F(y) �
G(y) only and if only F(y) = G(y)+C(y), andC(y) is a Casimir function. By this definition
and equation (5.8), we see that

Fλ � F (1)
λ =

N∑
j=1

I (j)

λ− λj
. (5.31)

Theorem 4.

(i) I (j), 1 � j � N are functionally independent.
(ii) There exit N independent function classes on the Poisson manifold {R3N, {·, ·}}, with

representative elements
∑N

j=1 λ
m
j I

(j), 1 � m � N − 1.

(iii) Fm � ∑N
j=1 λ

m
j I

(j), 1 � m � N − 1, i.e. F0, . . . , FN−1 belong to N distinct equivalent
classes.

The N Casimir functions h(j), 1 � j � N , are also functionally independent, because
they are composed of distinct components and not simply a mixture. Thus by proposition 6
and theorem 4, we see that the Poisson map (5.6) has N independent Casimir functions h(j),
1 � j � N , and N independent conserved integrals I (j), 1 � j � N , which are in involution
with respect to the Poisson bracket (5.16): hence it is integrable.

6. One reduction on the co-adjoint representative orbit

In order to find the reduction on the induced symplectic foliation by the Lie–Poisson
structure (5.16), we first introduce the Lie group associated with the Lie algebra LA(λj ).
According to the theory of Lie groups, the one we need here is

LG(λj ) = {r : rT Cλj r = Cλj , r ∈ SL(3, R)}. (6.1)
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Define σLA(λj ) : R3 → LA(λj ) by

σLA(λj )(α) = C−1
λj

( 0 −α3 α2

α3 0 −α1

−α2 α1 0

)
. (6.2)

We then have the commutation relation

[σLA(λj )(α), σLA(λj )(β)] = σLA(λj )(C
−1
λj
(α × β)), (6.3)

and hence σLA(λj ) is a Lie algebra isomorphism between R3 with Lie bracket [α, β] =
C−1
λj
(α × β) and the Lie algebra LA(λj ). A similar result to equation (2.9) is

σLA(λj )(rα) = AdrσLA(λj )(α), (6.4)

that is the adjoint action of the Lie group LG(λj ) on the Lie algebra LA(λj ) is equivalent to
the action of the Lie group LG(λj ) on the isomorphic Lie algebra R3.

The co-adjoint action of a group element r ∈ LG(λj ) is the linear map Ad∗
r : LA(λj )∗ →

LA(λj )∗ on the dual space satisfying

〈Ad∗
r (ω); σLA(λj )(α)〉 = 〈ω; Adr−1σLA(λj )(α)〉, (6.5)

for all ω ∈ LA(λj )∗, α ∈ R3. Here 〈; 〉 is the natural pairing between LA(λj ) and LA(λj )∗.
Thus, using equation (6.4) the co-adjoint action Ad∗

r of r on LA(λj )∗ has a matrix
representation Ad∗

r = (r−1)T = Cλj rC
−1
λj

relative to the corresponding dual basis on

LA(λj )∗ � R3.

Theorem 5.

(i) The symplectic leaves determined by the Casimir functions h(j), (j = 1, . . . , N) are the
orbits of the co-adjoint representation of LG(λj ).

(ii) The co-adjoint action of the Lie group LG(λj ) on the LA(λj )∗ is equivalent to the action
of the Lie group π(SL(2, R), ζj ) on the LA(λj )∗.

(iii) Casimir functions h(j), (j = 1, . . . , N) are the invariant functions of the action of the Lie
group π(SL(2, R), ζj ) on R3.

(iv) For each r ∈ LG(λj ) (a constant matrix), the co-adjoint map Ad∗
r on y(j), (j = 1, . . . , N)

is a Poisson mapping, or for each R ∈ π(SL(2, R), ζj ) (a constant matrix) on y(j),
(j = 1, . . . , N) is a Poisson mapping.

Proof.

(i) Casimir functions h(j) can be rewritten as

h(j) = 〈y(j), C−1
λj
y(j)〉, j = 1, . . . , N. (6.6)

Hence, using rT Cλj r = Cλj , we have

〈(r−1)T y(j), C−1
λj
(r−1)T y(j)〉 = 〈y(j), r−1C−1

λj
(r−1)T y(j)〉 = 〈y(j), C−1

λj
y(j)〉.

(ii) For

((r−1)T )T C−1
λj
(r−1)T = r−1C−1

λj
(r−1)T = C−1

λj
,

thus (r−1)T ∈ π(SL(2, R), ζj ).
(iii) Let R ∈ π(SL(2, R)), then

〈Ry(j), C−1
λj

Ry(j)〉 = 〈y(j),RT C−1
λj

Ry(j)〉 = 〈y(j), C−1
λj
y(j)〉.
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(iv) Only to prove it holds by π(SL(2, R)), denoting z(j) = Ry(j), then

A
j

j = RT , A
j

k = 0, k �= j,

where Ajj is the Jacobian matrix of the transformation.

�
Similar to theorem 3, we only need to obtain the following equality:

(A
j

j )
T Jj (y

(j))A
j

j = Jj (z
(j)), j = 1, . . . , N.

Since

Jj (y
(j)) = 1

2σ(y
(j))Cλj

hence

(A
j

j )
T Jj (y

(j))A
j

j = 1
2Rσ(y(j))CλjRT = 1

2Rσ(y(j))R−1Cλj

= 1
2σ(Ry(j))Cλj = Jj (z

(j)).

Consider the common level set of the co-adjoint representative orbits

{h(1) = 0, . . . , h(N) = 0}, (6.7)

which leads to the foliation of R3N . As the Poisson map (5.6) is restricted on it, a symplectic
map on the symplectic manifold R2N with the canonical Poisson bracket

(F,G) =
N∑
j=1

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
(6.8)

is obtained.
Let

Ey(j) = π(g)(λj )y
(j), j = 1, . . . , N. (6.9)

Define τ : R2 → R3 by

τ(ψ) = 1
2

(
λψ1ψ2

−ζ(ψ1)2

ζ(ψ2)2

)
, λ = ζ 2. (6.10)

Taking

y(j) = τ(ψ(j)) = 1
2

(
λjp

jqj

−ζj (pj )2
ζj (q

j )2

)
, ψ(j) =

(
pj

qj

)
, j = 1, . . . , N, (6.11)

which satisfy

h(j) = y(j2)y(j3) +
(y(j1))2

λj
= 0, j = 1, . . . , N. (6.12)

By the relations

Ey(j) − π(g)(λj )y
(j) = τ(Eψ(j) − g(ζj )ψ

(j)), j = 1, . . . , N (6.13)

we get

Eψ(j) = g(ζj )ψ
(j) j = 1, . . . , N. (6.14)

Thus we have the map

E@ = S(@), @ = (ψ(1), . . . , ψ(N))T , (6.15)
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with

cn = 〈p, q〉 + 1
2β, (6.16)

where 〈, 〉 is the standard inner product in R2N and A = diag(ζ1, . . . , ζN). Equation (6.16) is
actually the nonlinearization of the eigenvalue problem (3.1). From equation (6.10) we have
the map T : R2N → R3N by

T (@) = (τ (ψ(1)), . . . , τ (ψ(N)))T . (6.17)

Proposition 8.

(i) {y(jk), y(js)} = (y(jk), y(js)), j = 1, . . . , N, k, s = 1, 2, 3.
(ii) Let τ∗ be the tangent map. Then

τ∗[ψj ](I∇ψj F ) = Jj∇y(j)F,

where I =
(

0 −1
1 0

)
.

(iii) dE p ∧ dE q = dp ∧ dq, p = (p1, . . . , pN)T , q = (q1, . . . , qN)T .

Proof.

(i) Using equations (6.8) and (6.11), direct calculation leads to them.
(ii) The matrix of the map τ∗[ψj ] is


1
2λjq

j 1
2λjp

j

−ζjpj 0

0 ζjq
j




and
∂F

∂pj
= 1

2
λjq

j ∂F

∂y(j1)
− ζjp

j ∂F

∂y(j2)
,

∂F

∂qj
= 1

2
λjp

j ∂F

∂y(j1)
+ ζjq

j ∂F

∂y(j3)
.

Hence

τ∗(I∇ψj F ) =




0 − 1
2λjζj (p

j )2 − 1
2λjζj (q

j )2

1
2λjζj (p

j )2 0 λjp
jqj

1
2λjζj (q

j )2 −λjpjqj 0


∇y(j)F = Jj∇y(j)F.

(iii) By equation (6.16), we have

〈q, dc ∧ dp〉 + 〈p, dc ∧ dq〉 = 0.

�
Hence, using the above identity, a simple calculation gives

dE p ∧ dE q =
N∑
j=1

dE pj ∧ dE qj = dp ∧ dq.

Corollary 3.

(i) T ∗{F,G} = (T ∗F, T ∗G), that is, T is a Poisson map.
(ii) S∗(F,G) = (S∗F, S∗G), that is, S is a symplectic map.

Noting theorem 4, we have

Corollary 4.

(i) The symplectic map (6.15) has N independent conserved integrals Fm = ∑N
j=1 λ

m
j I

(j),
m = 0, 1, . . . , N , which are in involution with respect to the classical Poisson
bracket (6.8).

(ii) The symplectic map (6.15) is integrable.



3984 Y-T Wu et al

Acknowledgments

This work was partially supported by HKBU 2403/00P. Project 10071075 was supported by
National Natural Science Foundation of China. The authors also thank the Science Foundation
and the Youth Teacher Foundation of Henan for financial support.

References

[1] Veselov A P 1991 Russ. Math. Surv. 46 1–51
[2] Moser J and Veselov A P 1991 Commun. Math. Phys. 139 217–43
[3] Bruschi M, Ragnisco O, Santini P M and Tu Gui-zhang 1991 Physica D 49 273–94
[4] Fordy A P 1999 Integrable Symplectic Maps (London Mathematical Society Lecture Note Series vol 225)

pp 43–55
[5] Francoise J P and Ragnisco O 1999 An Iterative Process on Quartics and Integrable Symplectic Maps (London

Mathematical Society Lecture Note Series vol 225) pp 56–63
[6] Nijhoff F W and Enolskii V Z 1999 Integrable Mappings of KdV Type and Hyperelliptic Addition Theorems

(London Mathematical Society Lecture Note Series vol 225) pp 64–78
[7] Raganisco O, Cao C W and Wu Y T 1995 J. Phys. A: Math. Gen. 28 573–88
[8] Geng X G 1993 J. Math. Phys. 34 805–17
[9] Wu Y T and Geng X G 1996 J. Math. Phys. 37 2338–45

[10] Wu Y T and Geng X G 1999 J. Phys. Soc. Japan 68 784–90
[11] Cao C W, Wu Y T and Geng X G 1999 J. Math. Phys. 40 3948–70
[12] Ragnisco O and Rauch-Wojciechowski S 1996 J. Phys. A: Math. Gen. 29 1115–24
[13] Weinstein A 1983 J. Diff. Geom. 18 523–57
[14] Abraham R and Marsden J E 1978 Foundations of Mechanics 2nd edn (London: Benjamin-Cummings)
[15] Olver P J 1986 Applicatios of Lie Groups to Differential Equations (New York: Springer)
[16] Marsden J E and Ratiu T S 1994 Introduction to Mechanics and Symmetry (Berlin: Springer)
[17] Sattinger D H and Weaver O L 1986 Lie Groups and Algebras with Applications to Physics, Geometry and

Mechanics (Berlin: Springer)
[18] Du D L, Cao C W and Wu Y T 2000 Physica A 285 332–50
[19] Wadati M 1976 Suppl. Prog. Theor. Phys. 59 36–63
[20] Ma W X and Li Y S 2000 Phys. Lett. A 268 352–9
[21] Ma W X and Geng X G 2001 Backlund Transformations of Soliton Systems from Symmetry Contraints (Lecture

Notes vol 29) (Providence, RI: American Mathematical Society) pp 313–23 (nlin.SI/0207071)
[22] Ma W X, Fuchssteiner B and Oevel W 1996 Physica A 233 331–54
[23] Manakov S V 1974 Sov. Phys.–JETP 40 269–74
[24] Hirota R and Satsuma J 1976 J. Phys. Soc. Japan 40 891–900
[25] Itho Y 1987 Prog. Theor. Phys. 78 507–10
[26] Nagai A and Satsuma J 1995 J. Phys. Soc. Japan 64 3669
[27] Hu X B and Bullough R K 1997 J. Phys. A: Math. Gen. 30 3635–41


